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Nonlinear Predictive Control of Active Four-wheel Steering Vehicles
Shuyou Yu* � , Wenbo Li � , Yongfu Li, Hong Chen, Hongqing Chu, Baojun Lin, and Jianhua Yu

Abstract: In order to improve the handling stability of active four-wheel steering vehicles, a nonlinear model
predictive controller is presented, which can guarantee that the actual sideslip angle and yaw rate can track the ideal
sideslip angle and the ideal yaw rate through control of the front and rear wheel angles. A nonlinear static tyre model
connected with a linear dynamic model is adopted to describe the vehicle dynamics. Furthermore, the tyre model
is replaced by a map in the optimization problem of nonlinear model predictive control. The introduction of maps
can reduce the online computational time by a trade-off between the computational burden of CPU and the storage
burden of ROM. Simulation results in CarSim indicate that the proposed controller can follow the outputs of the
ideal reference model, reduce the computational burden, and improve the handling stability of the active four-wheel
steering vehicles effectively.

Keywords: Active four-wheel steering, computation efficiency, handling stability, hash table, model predictive
control.

1. INTRODUCTION

Enhancing the handling stability of vehicles is a promis-
ing way to address road safety. Therefore, chassis control
technologies which can improve vehicle stability have re-
ceived extensive attention [1-3]. Active four-wheel steer-
ing (4WS), which is one of the chassis control technolo-
gies, is gaining a lot of attention because of its role in
improving the handling stability of vehicles [4]. Applica-
tions of active rear-wheel steering have been demonstrated
[5,6]. Nevertheless, it is a typical single-input single-
output system, which has limited effectiveness in improv-
ing vehicle handling stability [7-10]. By controlling the
front and rear wheel angle effectively, the active four-
wheel steering system can improve the vehicle’s steering
characteristics, and keep the steady-state gains of the lat-
eral acceleration and the yaw rate are small while the ve-
hicle is steering [11-13].

A lot of controllers have been proposed to improving
the handling stability of 4WS vehicles based on the as-
sumption that the tyre slip angle is small, i.e., the tyre

force has a linear relationship with the tyre slip angle.
A sliding mode control is presented for the active four-
wheel steering systems, in which a time-varying sliding
surface is designed to eliminate steady-state errors and
a smooth function is designed to alleviate the chattering
effect [14]. An internal mode decoupling scheme is de-
veloped to enhance the robustness of 4WS system by re-
jecting saturation and delay of actuators [15]. Considering
parametric uncertainties and disturbances, an adaptive in-
tegral terminal sliding mode controller for 4WS vehicles
with Ackerman Geometry is presented in [16]. A feed-
forward and feedback controller, which takes into account
disturbances and unmodeled dynamics of systems, is pre-
sented to track desired signals of a reference model [17].
A mixed H2/H∞ robust control method is proposed for the
purpose of ensuring stability, robustness, and performance
of systems [18,19]. A control law composed of state and
disturbance feedback controls is proposed to compensate
the influence of disturbances on 4WS [20]. To enhance
handling stability of 4WS vehicles, a triple-step steering
controller based on a linear tyre model has been developed
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[21], which can realize self-regulation of time-varying pa-
rameters. Furthermore, model predictive control (MPC)
strategies, which allow to explicit handle constraints, have
been presented for 4WS vehicles [22-25]. A model pre-
dictive controller considering constraints of actuators, tyre
slip angles, and lateral acceleration is designed for the
4WS vehicle to follow a reference yaw angle, and a refer-
ence longitudinal displacement [26]. Considering the in-
ner coupling between the front and rear wheels of vehi-
cles, a double-layer dynamic decoupling controller is pro-
posed to guarantee lateral stability of the 4WS vehicle,
in which a lower part-steering control unit is designed to
obtain decoupled control signals by model predictive con-
troller [27].

In principle, the tyre lateral characteristic is nonlin-
ear, for example, while the lateral acceleration is large.
Considering parameter-varying property of tyre cornering
stiffness, a robust adaptive sliding mode controller is de-
signed, in which a Takagi-Sugeno fuzzy model is estab-
lished to represent the nonlinear characteristics of tyres
[28]. A linear quadratic optimal control with the weighted
function of tyre cornering stiffness is adopted to achieve
satisfying performance when the tyre slip angle is large or
the vehicle is driving on a low adhesion road [29]. Con-
sidering the nonlinear characteristics of tyres, a nonlinear
triple-step controller with a map is designed in [30] to en-
hance the handling stability of 4WS vehicles. In order to
minimize the tracking errors of the lateral displacement
and the yaw angle of a 4WS vehicle, a model predictive
controller is designed, in which the nonlinear characteris-
tics of tyres is described by Magic Formula [31]. A model
predictive controller is to improve the driving performance
of four-wheel independent steering vehicles, in which a
nonlinear vehicle model is fitted by a neural network, and
coincidence degree of wheel steering centers is chosen as a
performance index [32]. On one hand, existing kinds of lit-
erature mainly design controllers to enhance the handling
stability of 4WS based on the linear tyre model, Magic
Formula tyre model, or short wavelength intermediate fre-
quency tyre model, etc. On the other hand, unmodeled dy-
namics of the load variation of tyres and constraints of the
actuators, the sideslip angle, and the yaw rate are not taken
into account simultaneously.

In this paper, a novel modeling method for active four-
wheel steering vehicles is proposed, in which the tyres
based on a map are first introduced. Then, an efficient
lookup table algorithm is proposed, and a model pre-
dictive controller is designed where the nonlinear lateral
characteristics of tyres, the constraints of the actuator, the
sideslip angle, and the yaw rate are considered. Compared
with the traditional tyre models, the lookup table can fully
characterize the nonlinearity of the tyre, which converts
the computational burden into the storage burden.

The paper is organized as follows: Section 2 sets up
the control problems and derives the dynamic model of

the 4WS vehicle. Section 3 introduces the steering nonlin-
ear model predictive controller. Section 4 verifies the ef-
fectiveness of the proposed controller through simulation.
The conclusion is drawn in Section 5.

2. PROBLEM SETUP

In general, the purpose of an active four-wheel steer-
ing system is to improve vehicle handling stability. In this
research, improving the vehicle handling stability will be
transformed into the problem of tracking the ideal steer-
ing characteristics. Suppose that the sideslip angle and the
tyre load can be accurately observed. The 4WS vehicle
control system is shown in Fig. 1. The ideal sideslip angle
β ∗ and the ideal yaw rate γ∗ are determined by the refer-
ence model based on the reference front wheel angle δ ∗f .
The steering angles of the front and rear wheels, i.e., δ f ,
δr, are determined by model predictive controller in terms
of the tyre loads of the front and rear wheel Fzi, i = f ,r,
and errors between β ∗, γ∗ and β , γ .

2.1. Vehicle model without the property of tyres
A two-degree-of-freedom vehicle model is presented in

this research, which can reflect the basic steering charac-
teristics of an active four-wheel steering vehicle, as shown
in Fig. 2.

In Fig. 2, β is the sideslip angle, α f and αr are the slip
angle of the front and rear tyres respectively, v is the lon-
gitudinal speed, vy is the lateral speed, Fy f is the lateral
force of the front wheel, δ f is the front wheel angle, Fyr

is the lateral force of the rear wheel, δr is the rear wheel
angle, a and b are distances from the center of gravity to
the front and rear axle respectively, m is the vehicle mass,

 

Fig. 1. 4WS vehicle control system.
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Fig. 2. Two degree-of-freedom vehicle model without the
property of tyres.
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Table 1. Table of of tyre side characteristics.

αi (deg)
Fzi (N) 0 2200 4125 6250 8105 10525

0 0 0 0 0 0 0
0.5 0 371.57 678.85 941.63 1081.15 1129.98
1 0 711.74 1286.92 1794.96 2134.63 2259.97
...

...
...

...
...

...
...

20.5 0 1645.8 3285.59 4932.07 6586.24 8237.64

and γ is the yaw rate.
The vehicle model without the property of tyres is [19]

mv
(

β̇ + γ

)
= Fy f +Fyr,

Izγ̇ = aFy f −bFyr, (1)

where Iz is the yaw moment of inertia.

2.2. Tyre model
According to (1), the steering characteristics of 4WS

vehicles are determined primarily by lateral forces of
tyres. A nonlinear map of Fyi with respect to αi and Fzi,
i = f ,r, is shown in Fig. 3. The data of side characteris-
tics of tyres in this research are obtained from a CarSim’s
tyre model (215/79 R15). Tyre model can be classified
into the physical model and the empirical model [33]. On
one hand, physical models in general are too complex to
be implemented in real-time operations compared to em-
pirical models. On the other hand, empirical models, for
example the Magic formula and the Dugoff model, rely
on a number of full-scale tests since there are a lot of pa-
rameters to fit data accurately [34], which might cause a
heavy online computational burden in MPC as well.

A tyre model based on a map is presented here, in which
the lateral force is obtained by lookup-table methods, cf.
Table 1. The table includes nrow rows and ncol columns,

Fig. 3. Curve of tyre side characteristics.
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Fig. 4. Two degree-of-freedom vehicle model.

where the first column and the first row store the keywords
of the tyre slip angle and the tyre load, respectively.

2.3. Vehicle model
A nonlinear vehicle model is established [35], which

includes a static nonlinear operator of tyre and a linear
dynamic system, as shown in Fig. 4.

The tyre slip angles of the front and rear wheel are [36]

α f = β +
aγ

v
−δ f ,

αr = β − bγ

v
−δr. (2)

Choosing the state x =
[
β γ

]T and the control in-

put u =
[
δ f δr

]T , the two degree-of-freedom four-wheel
steering vehicle based on the map is described as

Fy f = Fmap f (x,u,Fz f ) ,

Fyr = Fmapr (x,u,Fzr) ,

ẋ = Ax+BuF ,

(3)

where uF =
[
Fy f Fyr

]T , Fmap f and Fmapr are the nonlinear
map of tyre, i.e., Fig. 3, and

A =

[
0 −1
0 0

]
, B =

[ 1
mv

1
mv

a
Iz

−b
Iz

]
. (4)

3. THE NONLINEAR STEERING CONTROLLER

3.1. Reference model
Here, a reference model is adopted in order to provide

the ideal steering characteristics for 4WS vehicles. The
steering sensitivity of 4WS vehicles is required to be the
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same as that of the traditional vehicle, and the sideslip an-
gle is required to be close to zero after adding a rear wheel
angle. Then, the reference model is [37,38]

ẋd = Adxd +Bdud , (5)

with

Ad =

[
− 1

τβ

0
0 − 1

τγ

]
, Bd =

[ kβ

τβ

kγ

τγ

]
, (6)

where xd =
[
β ∗ γ∗

]T is the state of the reference model,
i.e., the ideal sideslip angle and the ideal yaw rate, ud =[
δ ∗f
]

is the input of the reference model, i.e., the reference
front wheel angle. The terms of τβ and τγ are the time
constants, kβ is the steady state gain of the ideal sideslip
angle, and the steady state gain of the ideal yaw rate is
[39]

kγ =
C fCr (a+b)v

C fCr(a+b)2−mv2 (aC f −bCr)
, (7)

where C f is the front wheel side cornering stiffness, and
Cr is the rear wheel side cornering stiffness.

Note that usually kβ is small, which can even be set to
zero in the ideal situation. The empirical range of τβ and
τγ is generally 0.01-0.3, respectively [39].

Considering the limitation of road adhesion conditions,
the acceleration constraint of a vehicle is [40]

|ay| ≤ µg, (8)

where µ is the road adhesion coefficient, and g is the con-
stant of gravitation. Denote a set Sγ as

Sγ :=
{

S ∈ R1
∣∣ |S| ≤ µg

v

}
. (9)

The yaw rate γ satisfies γ ∈ Sγ , and the ideal yaw rate
γ∗ stays in the same saturation region as well, i.e., γ∗ ∈ Sγ

[41].

Remark 1: In general, the goal of chassis control tech-
nologies is to design a controller to make the vehicle with
the handling stability [42,43]. The conditions of the han-
dling stability are given by the reference model [37,38].
Note that theoretical studies on the handling stability are
beyond the scope of this research.

3.2. Predictive controller with tyre map
The stability control problem for active four-wheel

steering vehicles can be transformed into a trajectory
tracking control problem. The state and input constraints
are

X :=
{

x =
[
β γ

]T ∣∣∣ |β | ≤ βmax, |γ| ≤
µg
v

}
, (10)

U :=
{

u =
[
δ f δr

]T ∣∣∣ |δ f | ≤ δ f max, |δr| ≤ δrmax

}
,

(11)

where βmax is an upper limit of the sideslip angle, δ f max

and δrmax are upper limits of the front and rear wheel an-
gle, respectively.

Considering constraints of the actuators, the sideslip an-
gle, and the yaw rate, the optimization problem is formu-
lated as follows:

Problem 1:

minimize
u(·)

J1 (u(·)) , (12)

subject to

Fy f (τ,x(t)) = Fmap f (x(t) ,u(τ) ,Fz f (t)),

Fyr (τ,x(t)) = Fmapr (x(t) ,u(τ) ,Fzr (t)),

ẋ(τ,x(t)) = Ax(τ,x(t))+BuF (τ,x(t)),

u(τ) ∈U ,

x(τ,x(t)) ∈ X ,

x(t,x(t)) = x(t),

τ ∈ [t, t +Tp],

(13)

where

J1 (u(·)) :=
∫ t+Tp

t

(
‖x(τ,x(t))− xd (τ)‖2

Q

+ ‖∆u(τ)‖2
R

)
dτ (14)

is the cost function.
In Problem 1, Tp is the prediction horizon, x(·,x(t))

represents the predicted state trajectory starting from the
initial state x(t) under the control u(·), Q and R are pos-
itive definite state and input weighting matrices, respec-
tively. Problem 1 is solved in discrete time, in which the
sampling time is ∆t, and ∆u(τ) = u(τ)−u(τ−∆t).

Remark 2: Problem 1 usually requires to solve a
Hamilton-Jacobi-Bellman (HJB) equation. However, the
analytical solution of the HJB equation cannot be ob-
tained directly in general. Therefore, the methods to ob-
tain numerical solution is adopted, for example sequential
quadratic programming (SQP), the Newton-type method,
heuristic algorithms. Since Problem 1 contains look-up ta-
bles, it cannot be directly solved by the gradient-based
optimization algorithm, i.e., SQP, Newton-type method.
Herein, the heuristic algorithms are adopted, such as the
particle swarm optimization algorithm, the ant colony op-
timization algorithm, and the simulate anneal arithmetic.

3.3. Optimization algorithm
In this research, the particle swarm optimization algo-

rithm is used to solve Problem 1. Since particle swarm
optimization algorithm can not solve directly constrained
optimization problem [44], the cost function J1 is rewrit-
ten as

J2 (u(·)) :=
∫ t+Tp

t

(
‖x(τ,x(t))− xd (τ)‖2

Q
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+ ‖∆u(τ)‖2
R +σPen (τ)

)
dτ, (15)

where σ is a positive penalty coefficient, and Pen (t) is a
penalty function

Pen (τ) = max{0,C j (x(τ,x(t)) ,u(τ))} ,
j = 1, 2, 3, 4, (16)

with

C1 ((x(τ,x(t)) ,u(τ))) = |β (τ)|−βmax,

C2 ((x(τ,x(t)) ,u(τ))) = |γ (τ)|−
µg
v
,

C3 ((x(τ,x(t)) ,u(τ))) = |δ f (τ)|−δ f max,

C4 ((x(τ,x(t)) ,u(τ))) = |δr (τ)|−δrmax.

(17)

Thus, the optimization problem can be rewritten as

Problem 2:

minimize
u(·)

J2 (u(·)) , (18)

subject to

Fy f (τ,x(t)) = Fmap f (x(t) ,u(τ) ,Fz f (t)),

Fyr (τ,x(t)) = Fmapr (x(t) ,u(τ) ,Fzr (t)),

ẋ(τ,x(t)) = Ax(τ,x(t))+BuF (τ,x(t)),

x(t,x(t)) = x(t),

τ ∈ [t, t +Tp].

(19)

The proposed nonlinear model predictive control law is
formally described by Algorithm 1.

3.3.1 Hash table
At Step 4 of Algorithm 1, the computational complex-

ity of Problem 2 is mainly caused by the nonlinear tyre
model. A lookup-table method is presented to compute
the tyre lateral force, which is established by tyre lateral
characteristic, i.e., Table 1. Note that the nonlinear optimal
problem is transformed into a linear optimization problem,
and computation complexity is replaced by the related as-
torage and search complexities.

Algorithm 1: 4WS vehicle control system.
Input: β , γ , δ ∗f , Fzi (i = f ,r)
Output: δ f , δr

Step 1: Initialization.
Step 2: Get values of x(t) and Fzi (t).
Step 3: Compute the ideal sideslip angle and yaw rate, i.e.,
β ∗, γ∗, by reference model.
Step 4: Solve Problem 2 to get u∗ (·).
Step 5: The first element of the open-loop control se-
quence acts on the system.
Step 6: At the next time instant, set t = t +∆t, and go to
Step 2.

Here, the hash table is used to obtain the lateral forces
based on the tyre slip angles and the tyre loads. The hash
table is made up of two parts: a matrix (the actual table
that stores data of tyre side characteristics, i.e., Table 1),
and a hash function [45].

Denote M as a matrix consisting of data in Table 1. De-
note M (k,c) with k = 1, 2, · · · , row and c = 1, 2, · · · , col
as the element located in the k-th raw and c-th column of
M. Furthermore, define a submatrix of M as

M (r : k,c) = [M (r,c) ,M (r+1,c) , · · · ,M (k,c)]T .
(20)

For every tyre load Fzi, there is a positive integer n1 such
that

M (1,n1)≤ Fzi < M (1,n1 +1) , 2≤ n1 < ncol , (21)

where n1 is calculated by the sequential search method
[46].

Then, according to (21), a submatrix M̃ consisting of the
tyre lateral forces under the tyre load Fzi, can be obtained
by the linear interpolation [47].

M̃ (1 : ncol−1,1)

= M (2 : ncol ,n1)

+
Fzi−M (1,n1)

M (1,n1 +1)−M (1,n1)

× (M (2 : ncol ,n1 +1)−M (2 : ncol ,n1)) . (22)

Denote [α0, αn] as the interval of the tyre slip angle in
Table 1, where α0 = 0, αn = 20.5, and n = 41. Divide
each interval into equal parts, and encode them as 1, 2, . . .,
n. Considering the hash function ceil (·) mapping a real
number to an integer, i.e., roundup function, the keyword
for any Fy f or Fyr are (n1,n2), where

n2 = ceil
(
(|αi|−α0)

n
αn−α0

)
. (23)

Furthermore, the lateral force Fyi can be obtained by fol-
lowing linear interpolation, i.e.,

Fyi (αi) =−sign(αi)

[
M̃(n2,1)

+
|αi|−αn2

αn2+1−αn2

(M̃(n2 +1,1)− M̃(n2,1))
]
.

(24)

The algorithm of tyre model based on the hash table is
formulated as Algorithm 2.

4. SIMULATION

In this research, CarSim’s tyre model (215/70 R15) is
used. A table of tyre shown in Table 1 is established of-
fline with nrow = 43 and ncol = 7. As a comparison, both
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Algorithm 2: Hash table.
Input: αi, Fzi, (i = f ,r).
Output: Fyi (i = f ,r).
Step 1: Compute n1 according to (21).
Step 2: Compute the tyre lateral forces M̃ under the tyre
load Fzi according to (22).
Step 3: Compute the keyword n2 according to (23).
Step 4: Access the lateral force Fyi according to (24).

an uncontrolled front wheel steering vehicle (FWS) and
a proportional controller are designed [48,49], where the
ratio of the proportional controller is

δ f

δr
=
−b+mav2

/
C f (a+b)

a+mbv2
/

Cr (a+b)
. (25)

The weighting matrices are chosen as Q =

[
500 0
0 500

]
,

R =

[
50 0
0 50

]
and σ = 106. The other simulation param-

eters are shown in Table 2.
The simulation scenario is as follows: the road adhe-

sion coefficient is µ = 0.75, the constraint of the lateral
acceleration is |ay| ≤ 0.75 g. The constraint of the sideslip
angle is β ∈ [−0.038, 0.038] rad, which prevents the ve-
hicle from instability [50].

Remark 3: In this research, the parameters of con-
troller include the prediction horizon (Tp), the weighting
matrices (Q and R), and the penalty coefficient (σ ), which
is usually obtained by trial and error. Compared to the
input weighting matric R, the large state weighting ma-
tric Q quickly drives the state to the ideal values at the
expense of large control increment action. Penalizing the
term ‖∆u(τ)‖ with large values of R reduces the control
increment action and slows down the rate that the state
approaches the ideal values [51].

4.1. Cornering maneuver

Here, two tests of the step response with both a low
speed and a high speed are carried out.

Table 2. Parameters of simulation.

Parameter Value Parameter Value
m 1111 kg Iz 2031.4 kg·m2

a 1.04 m b 1.56 m
C f 39515.0 N/rad Cr 39515.0 N/rad
Tp 0.05 s ∆t 0.01 s
τβ 0.1 τγ 0.1

δ f max 0.5 rad δrmax 0.08 rad

4.1.1 Case 1: Low-speed
Scenario: The longitudinal speed of the 4WS vehicle is

10 m/s. As shown in Fig. 5, the reference front wheel angle
is 0.14 rad. The constraint of yaw rate is |γ| ≤ µg

v = 0.735.
Figs. 6-8 are evolutions of the sideslip angle, the yaw

rate, and the lateral acceleration of vehicles under three
steering modes, respectively. Note that the solid red lines
in Figs. 6-8 represent the corresponding constraints. In
Figs. 6 and 7, compared with the other schemes, the pro-
posed controller achieves the best tracking performance
on the ideal steering characteristic. The sideslip angle of
the vehicle under the proportional controller is close to the
reference. However, the yaw rate is greater than the related
ideal reference, which will result in the so-called over-
steer. In addition, the sideslip angle of the uncontrolled
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FWS vehicle is much greater than 0.038 rad sometime
which might cause the instability problem of vehicles. The
evolutions of the 4WS vehicle with the proportional con-
troller shown in Figs. 7 and 8 violate constraints of the
yaw rate and the lateral acceleration. Fig. 9 are the con-
trol inputs u =

[
δ f δr

]T , i.e., the front steering angle and
the rear steering angle. The front wheel steering direction
and the rear wheel steering direction are opposite, which
causes the so-called counter-phase steering mode of four-
wheel steering vehicles at a low speed. It can be seen from
Fig. 9 that actuators are not saturated.

Simulation results in Case 1 show that the proposed
model predictive controller can enhance the handling sta-
bility of the 4WS vehicle.

4.1.2 Case 2: High-speed
Scenario: the steering wheel turns at a fixed angle while

the vehicle is traveling in a straight line at a constant speed
of 20 m/s. As shown in Fig. 10, the reference front wheel
angle is 0.07 rad. The constraint of yaw rate is |γ| ≤ µg

v =
0.3675.

The crosswind, which frequently occurs to the vehicle,
might seriously affect the handling stability of vehicles.
To verify the robustness of the controller, a crosswind ex-
periment is carried out while vehicles are traveling at high
speed. The crosswind with the speed of 40 km/h is acted
after 2 s.

Figs. 11-13 are evolutions of the sideslip angle, the yaw
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Fig. 10. Reference front wheel angle.

rate, and the lateral acceleration of vehicles under three
steering control modes, respectively. In Figs. 11 and 12,
the proposed controller and the proportional controller can
improve the handling stability of vehicles with respect to
the crosswind disturbance. The sideslip angle of the 4WS
vehicle with proposed controller is kept close to zero in the
process of the sinusoidal steering, i.e., the attitude of the
vehicle is well maintained. Note that the solid red lines in
Figs. 11-13 represent the corresponding constraints. The
evolutions of the uncontrolled FWS vehicle in Figs. 11
and 13 violates the corresponding constraints. The control
inputs, i.e., the front and rear wheel steering angles, are
shown in Fig. 14, in which directions of the front and rear
wheel steering angles are the same, i.e., the 4WS vehicle
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Fig. 11. The evolution of sideslip angle.
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Fig. 13. The evolution of lateral acceleration.
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Fig. 14. The evolution of control inputs.

is in-phase steering mode at a high speed. The control in-
puts are in a reasonable range, and the actuators are not
saturated.

Simulation results in Cases 1 and 2 show the effective-
ness of the proposed scheme to track accurately the dy-
namics of the ideal vehicles at different speeds.

4.2. Sinusoidal steering angle
Here, the sinusoidal steering test for vehicles with high

speed is carried out.

4.2.1 Case 3: Sinusoidal steering test
Scenario: As shown in Fig. 15, the amplitude and the

frequency of the reference front wheel angle are 0.07 rad
and 1 rad/s, respectively. The longitudinal speed is 20 m/s.
The constraint of yaw rate is |γ| ≤ µg

v = 0.3675. The cross-
wind is with the speed of 50 km/h.

Figs. 16-18 are evolutions of the sideslip angle, the yaw
rate, and the lateral acceleration of vehicles under three
steering control modes, respectively. Note that the solid
red lines in Figs. 16-18 represent the corresponding con-
straints. In Figs. 16 and 17, both the sideslip angle and
the yaw rate of the vehicle with the proposed controller
are very close to that given by the reference model. In
Figs. 16-18, the evolutions of vehicles with the proposed
controller meet the constraints. However, the front wheel
steering vehicle is over-steer, and vehicle with the propor-
tional controller is under-steer. In Fig. 19, the four-wheel
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Fig. 15. Reference front wheel angle.
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Fig. 16. The evolution of sideslip angle.
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Fig. 17. The evolution of yaw rate.
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steering vehicle is in-phase steering mode at a high speed.
The control inputs are still in a reasonable range, and the
actuators are not saturated.
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Simulation results of Cases 2 and 3 show the proposed
method can improve effectively the handling stability of
vehicles at different steering inputs under external distur-
bances, that is, the controller is robust.

4.3. Computational burden
To verify the effectiveness of the map for reducing the

computational burden of model predictive controller, the
Dugoff tyre model [52] is built as a comparison. The sim-
ulation is performed on a desktop computer with 3.6 GHz
Intel Core i7-4790 processors.

Fig. 20 is the comparison of computational time. The
solid line represents the computational time of model pre-
dictive controller with maps, the dash-dot line represents
the computational time of model predictive controller with
Dugoff tyre model. The average computational time of
model predictive controller with maps is 0.00559 s, and
the average computational time of the model predictive
controller with Dugoff tyre model is 0.00763 s. That is,
26.74% computational burden reduction is achieved with
maps. Note that the computational time of the model pre-
dictive controller with Dugoff tyre model is greater than
the sampling time ∆t = 0.01 s sometimes which causes
the vehicle losing control at the next time instant.

Note that in this research, CarSim is used in the simula-
tion, which is a professional software for analyzing vehi-
cle system dynamics with high accuracy. Future research
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Fig. 20. The comparison of computational time.

will take the implementation of the proposed controller in
real vehicles or small-scale vehicles into account.

5. CONCLUSION

In this paper, a nonlinear predictive controller taking
the nonlinear characteristics of tyres into account was de-
veloped to improve the handling stability of active 4WS
vehicles. A model that consists of a nonlinear tyre and a
linear dynamic vehicle was presented, in which the non-
linear tyre model was approximated by the map. As a re-
sult of introduction of a map, i.e., balance of the computa-
tional burden of CPU and the storage burden of ROM, the
computational complexity of MPC was exploited. Simula-
tion results in CarSim indicate that the proposed controller
could enhance the handling stability of the 4WS vehicle.
Furthermore, computational complexity is reduced with
the introduction of maps.

The optimization problem based on the hash table is
addressed whereas stability of the system with model pre-
dictive controller is not discussed. Future works will take
into account the effect of the map on the stability of the
system.
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